
Download free eBooks at bookboon.com

Click on the ad to read more

Structured Programming with C++

153

7 Files

7 Files
7.1 Introduction

You have probably noticed when running our programs during the course so far, each run has started from the same
origin as previous run. The data entered to the program is gone when running the program the next time. This is of course
unacceptable. We must have the possibility to save data entered or calculated during one run, so we can continue where
we stopped last time. The solution to this is to save the data on disk in files.

In this chapter we will go through the basic concepts about file management and how to read from and write to files in C++.

In professional programming relational databases of some kind are mostly used for data storage. A lot of special code is
however required in C++ to do that, which is outside the scope of this course. Here, we will only store data in the simpliest
format, namely text files which can be read and updated with a simple text editor like the Notepad program.

To be able to handle files in C++ we need some knowledge about streams, which we will first go through in this chapter.
We will then show how to declare a file, open it, save data in it, read from it and close it.

You should normally open the file as late as possible in the program and close it as early as possible, since you want to
minimize the risk for loss of data by keeping the files open as short time as possible. If the system would break down
while a file is open, the result might be a corrupt file not possible to read from. You will then have to return to the last
backup of the file.

http://bookboon.com/
http://bookboon.com/count/advert/7df08111-c180-4bd8-97db-a2d500e6043a

Download free eBooks at bookboon.com

Structured Programming with C++

154

7 Files

7.2 Streams

When files are processed in C++ the communication goes between hard disk file and program via a stream:

University West, Trollhättan Structured Programming with C++
Department of Economy and Informatics

Copyright Page: 151

When data is to be read from a disk file (infile) to a program, it goes
via an intermediary store (instream) which works as a buffer between
the hard disk and the program, where data is queued to be read to the
program.

Similarly, when data is to be written from the program to a disk file
(outfile), it is first stored in an intermediary store (outstream) before it
is finally written to the file.

As programmer you only have to bother about reading from the
instream and writing to the outstream. The operating system takes care
of the physical reading and writing on the disk file.

Reading from a Stream
So far, you have read data from the keyboard with statements like:
cin >> cName;

We have said that cin stands for ’console in’, i.e. reading from the
keyboard. But actually, the data has been transferred via an instream
called cin.

The same applies to reading from an instream. Suppose that we have
an instream called is and that it is connected to a particular disk file.
Then we read data from the instream with statements like:
is >> cName;
is >> dAmount;

Reading data from an instream with the >> operator is called
'formatted input', because the data from the instream is

Program

Outstream

Instream

Infile

Outfile

When data is to be read from a disk file (infile) to a program, it goes via an intermediary store (instream) which works
as a buffer between the hard disk and the program, where data is queued to be read to the program.

Similarly, when data is to be written from the program to a disk file (outfile), it is first stored in an intermediary store
(outstream) before it is finally written to the file.

As programmer you only have to bother about reading from the instream and writing to the outstream. The operating
system takes care of the physical reading and writing on the disk file.

7.3 Reading from a Stream

So far, you have read data from the keyboard with statements like:

cin >> cName;

We have said that cin stands for ’console in’, i.e. reading from the keyboard. But actually, the data has been transferred
via an instream called cin.

The same applies to reading from an instream. Suppose that we have an instream called is and that it is connected to a
particular disk file. Then we read data from the instream with statements like:

is >> cName;

is >> dAmount;

Reading data from an instream with the >> operator is called ‘formatted input’, because the data from the instream is
automatically accommodated to the data type of the receiving variable.

In some situations it is not possible to accommodate the data to a specific data type, for instance if you try to read letters
to an integer variable. A run-time error will then occur.

You can also use ‘unformatted input’, which means that characters are read from the file exactly as they are stored,
without any accommodation. Here is an example:

http://bookboon.com/

Download free eBooks at bookboon.com

Structured Programming with C++

155

7 Files

char cName[30];

is.getline(cName, 29);

The last statement reads up to 29 characters from the instream, and the null character is put after the last read character.
The read operation continues until the end line character is reached. Suppose the data in the file is stored linewise (for
instance if data has been entered using Notepad and Enter has been pressed after each line). Then one line at a time is read.

If there happens to be fewer characters than 29 at the current line in the file, for instance 17 characters, the null character
is stored in the 18th position.

If there are more than 29 characters at the line in question in the file, the input is interrupted after 29 characters.

Thus, the programmer must carefully check how data is stored in the file, so as not to loose important information.

7.4 Writing to a Stream

Writing data to an outstream can also be done in two ways:

Formatted output is done with statements like:

os << cName;

Here we presume that an outstream named os has been created and been connected to a specific disk file. The statement
implies that the characters in the variable cName are written to the outstream.

Formatted output also implies that you have the opportunity to control the layout of the data, for instance with the function
width(). Compare the ‘Variables’ chapter, where we discussed formatted output.

Unformatted output means that the characters in the variable are written to the outstream exactly in the format they
are stored in the variable, for instance:

os.put(c);

os.write(cName, 30);

The put() function prints a character, namely the character represented by the variable c, to the outstream os. The write()
function writes 30 characters from the variable cName to the outstream os.

7.5 Attaching a File to a Stream

Before being able to use an instream or outstream, it must be declared and attached to a disk file. The statement:

ifstream infile("address.txt");

declares the instream infile and attaches it to the disk file named address.txt.

ifstream is the short for ‘input file stream’. You can regard ifstream as a data type similarly to integer or double. But actually,
ifstream is a class from which we derive an object of the ifstream type with the object name infile.

When this statement has been executed the stream is ready for read operations.

http://bookboon.com/

Download free eBooks at bookboon.com

Click on the ad to read more

Structured Programming with C++

156

7 Files

Below we declare an outstream:

ofstream outfile("newadr.txt");

The stream is called outfile and is connected to a disk file named newadr.txt. ofstream is short for ‘output file stream’.
ofstream is also a class from which we create the object outfile.

At completion of this statement the outstream is ready for write operations.

If the file newadr.txt exists, it will be deleted and a new file with the same name is created. Many times you want to add
data to the end of an existing file without destroying existing information. The outstream is then declared as follows:

ofstream outfile("newadr.txt", ios::app);

app is short for ‘append’.

To make the stream declarations above work you must include the file fstream.h:

#include <fstream.h>

To allow for reading from and writing to streams, you must as usual include the file iostream.h:

#include <iostream.h>

At completion of reading from or writing to the streams, you close the streams::

infile.close();

outfile.close();

“The perfect start
of a successful,
international career.”

CLICK HERE
to discover why both socially

and academically the University

of Groningen is one of the best

places for a student to be
www.rug.nl/feb/education

Excellent Economics and Business programmes at:

http://bookboon.com/
http://bookboon.com/count/advert/5e8cd819-4ddd-4941-a6bb-a16900eac393

Download free eBooks at bookboon.com

Structured Programming with C++

157

7 Files

7.6 A Complete Write Program

To summarize our experiences we will now create a simple program for writing of data to file. The program will read
product names from the user (keyboard) and store them in a file named prodfile.txt

We begin with a JSP graph:

University West, Trollhättan Structured Programming with C++
Department of Economy and Informatics

Copyright Page: 154

A Complete Write Program
To summarize our experiences we will now create a simple program
for writing of data to file. The program will read product names from
the user (keyboard) and store them in a file named prodfile.txt

We begin with a JSP graph:

First we declare an outstream and attach it the the file prodfile.txt.
Entry of product names from the keyboard is made in a loop. As soon
as a product name has been entered by the user, it is written to the
outstream. At entry completion, we close the outstream.

Here is the code:

#include<iostream.h>
#include<fstream.h>
void main()
{
 char cProd[30] = "";
 ofstream outfile("prodfile.txt");
 cout << endl << ”Enter product, (only Enter to exit): ";
 cin.getline(cProd,29);
 while(cProd[0]!='\0')
 {
 outfile << cProd << endl;
 cout << endl << ”Enter product: ";
 cin.getline(cProd,29);
 }
 outfile.close();
}

First we include the two header files iostream.h (to allow for input and
output) and fstream.h (to allow for stream management).

Writing

Create outstream Read products

Enter product Write to outstream

Close outstream

* *

First we declare an outstream and attach it the the file prodfile.txt. Entry of product names from the keyboard is made
in a loop. As soon as a product name has been entered by the user, it is written to the outstream. At entry completion,
we close the outstream.

Here is the code:

#include<iostream.h>

#include<fstream.h>

void main()

{

 char cProd[30] = "";

 ofstream outfile("prodfile.txt");

 cout << endl << "Enter product, (only Enter to exit): ";

 cin.getline(cProd,29);

 while(cProd[0]!='\0')

 {

 outfile << cProd << endl;

 cout << endl << "Enter product: ";

 cin.getline(cProd,29);

 }

 outfile.close();

}

First we include the two header files iostream.h (to allow for input and output) and fstream.h (to allow for stream
management).

http://bookboon.com/

Download free eBooks at bookboon.com

Structured Programming with C++

158

7 Files

In main() we declare the string variable cProd used for storage of product names in the program. Then we declare the
outstream outfile and attach it to the disk file prodfile.txt.

Entry and output is made by first reading the first product from the keyboard with the cin.getline() function before the
while loop starts. Since the while condition checkst the variable cProd to actually hold a string, the string variable cProd
must contain a string.

The while condition checks that the first character of the string variable cProd (cProd[0]) is not the null character. If
it were, the user would have pressed Enter without having entered any product name, and the loop is then terminated.

The first statement in the loop prints the product name to the outstream outfile. The two subsequent statements read a
new product name from the user.

The loop is terminated when the user presses Enter without entering any product name. The outstream is then closed and
the file operation is complete. The file prodfile.txt now contains a number of product names.

When having run the program you would probably like to examine the result. Start ‘Explore’ and find the file prodfile.txt,
which is in the project folder where the cpp file is saved, or maybe in the ‘Debug’ subfolder, depending on your Visual
Studio settings. Double-click the file to make the Notepad program be started and the file content be shown:

7.7 A Complete Reading Program

We will now create a new program that reads data from prodfile.txt and prints the information on the screen. We start
with a JSP graph:

University West, Trollhättan Structured Programming with C++
Department of Economy and Informatics

Copyright Page: 156

A Complete Reading Program
We will now create a new program that reads data from prodfile.txt
and prints the information on the screen. We start with a JSP graph:

First we declare the instream and attach it the the prodfile.txt file.
Reading and printing on the screen is made in a loop where we read
one product at a time from the instream and print it on the screen. At
completion, we close the instream.

Here is the program:

#include<iostream.h>
#include<fstream.h>
void main()
{
 char cProd[30] = "";
 ifstream infile("prodfile.txt");
 while(infile.getline(cProd,29))
 cout << cProd << endl;
 infile.close();
}

We include the same header files as in the previous progarm.

In main() we declare the string variable cProd used for holding
product names in the program. Then we declare the instream infile and
attach it to the disk file prodfile.txt.

The while loop has the condition of a successful reading from the
instream. If so, the read product is printed on the screen. When there is
no more data in the file, the read operation is unsuccessful and the
loop is terminated. The instream is closed.

Reading

Create instream Print products

Read product Print on screen

Close instream

* *

http://bookboon.com/

Download free eBooks at bookboon.com

Click on the ad to read more

Structured Programming with C++

159

7 Files

First we declare the instream and attach it the the prodfile.txt file. Reading and printing on the screen is made in a loop
where we read one product at a time from the instream and print it on the screen. At completion, we close the instream.

Here is the program:

#include<iostream.h>

#include<fstream.h>

void main()

{

 char cProd[30] = "";

 ifstream infile("prodfile.txt");

 while(infile.getline(cProd,29))

 cout << cProd << endl;

 infile.close();

}

We include the same header files as in the previous progarm.

In main() we declare the string variable cProd used for holding product names in the program. Then we declare the
instream infile and attach it to the disk file prodfile.txt.

The while loop has the condition of a successful reading from the instream. If so, the read product is printed on the screen.
When there is no more data in the file, the read operation is unsuccessful and the loop is terminated. The instream is closed.

LIGS University
based in Hawaii, USA

 ▶ enroll by October 31st, 2014 and

 ▶ save up to 11% on the tuition!

 ▶ pay in 10 installments / 2 years

 ▶ Interactive Online education
 ▶ visit www.ligsuniversity.com to

 find out more!

is currently enrolling in the
Interactive Online BBA, MBA, MSc,

DBA and PhD programs:

Note: LIGS University is not accredited by any
nationally recognized accrediting agency listed
by the US Secretary of Education.
More info here.

http://bookboon.com/
http://bookboon.com/count/advert/ff2a784e-44d0-4687-80af-a3bc00b4ceb5

Download free eBooks at bookboon.com

Structured Programming with C++

160

7 Files

7.8 New Item at the End of the File

We will now show how to add one more product at the end of the file prodfile.txt. The solution is given by the following
JSP graph:

University West, Trollhättan Structured Programming with C++
Department of Economy and Informatics

Copyright Page: 157

New Item at the End of the File
We will now show how to add one more product at the end of the file
prodfile.txt. The solution is given by the following JSP graph:

This program reads only one more product. But, by placing the input
from the keyboard and printing to the outstream in a loop, you could
make the program more flexible to allow for entry of any number of
products.

First we read the product name from the user, then we create the
outstream and attach it to the file prodfile.txt, print the product to the
outstream, and close the outstream.

Here is the program code:

#include<iostream.h>
#include<fstream.h>
void main()
{
 char cProd[30] = "";
 cout << "Enter new product: ";
 cin.getline(cProd,29);
 ofstream outfile("prodfile.txt",ios::app);
 outfile << cProd << endl;
 outfile.close();
}

We use the same include files as previously. In main() we prompt the
user for a new product. Then we declare the outstream outfile and
attach it to the disk file prodfile.txt. Note that we use ios::app to make
existing data be kept and new data be added at the end of the file.
Then we print the entered product to the outstream and close the
outstream.

If you check the file prodfile.txt in Notepad, you will see one more
product having been added at the end:

New item

Create outstream Print product Read product Close outstream

This program reads only one more product. But, by placing the input from the keyboard and printing to the outstream
in a loop, you could make the program more flexible to allow for entry of any number of products.

First we read the product name from the user, then we create the outstream and attach it to the file prodfile.txt, print the
product to the outstream, and close the outstream.

Here is the program code:

#include<iostream.h>

#include<fstream.h>

void main()

{

 char cProd[30] = "";

 cout << "Enter new product: ";

 cin.getline(cProd,29);

 ofstream outfile("prodfile.txt",ios::app);

 outfile << cProd << endl;

 outfile.close();

}

We use the same include files as previously. In main() we prompt the user for a new product. Then we declare the outstream
outfile and attach it to the disk file prodfile.txt. Note that we use ios::app to make existing data be kept and new data be
added at the end of the file. Then we print the entered product to the outstream and close the outstream.

If you check the file prodfile.txt in Notepad, you will see one more product having been added at the end:

http://bookboon.com/

Download free eBooks at bookboon.com

Structured Programming with C++

161

7 Files

7.9 Products and Prices

We will now recreate the prodfile.txt to store both product id:s and prices for a number of products. The structure of the
file will be:

Product id
Price
Product id
Price
etc.

The price of each product comes after the product id.

The program will be similar to the one used for writing to file:

#include<iostream.h>

#include<fstream.h>

void main()

{

 int iProdId = 1;

 double dPrice;

 ofstream outfile("prodfile.txt");

 while(iProdId !=0)

 {

 cout << endl << "Enter product id: ";

 cin >> iProdId;

 cout << " ...and price: ";

 cin >> dPrice;

 if(iProdId > 0)

 outfile << iProdId << endl << dPrice << endl;

 }

 outfile.close();

}

We use the same include files as previously.

In main() we declare the variable iProdId used for storage of the product id:s in the program. It is initialized to 1 for the
sake of making the while loop start with a valid value of iProdId. The variable dPrice will hold the product prices. We
also declare the outstream outfile and attach it to the disk file prodfile.txt.

The while loop reads product id:s and prices from the user and prints them to the outstream. The while condition checks
that there is a valid product id different from zero. If so, the user is prompted for a product id and a price. If the product
id is greater than zero, the information is written to the outstream outfile. Note that we also print endl after each value,
which makes each information item be printed on a separate line. This way of storing data in a file facilitates printing and
reading from a programming point of view. Avoid several values per line!

http://bookboon.com/

Download free eBooks at bookboon.com

Click on the ad to read more

Structured Programming with C++

162

7 Files

At completion of the loop the outstream is closed.

By looking at the file in Notepad, you can figure out the structure:

First there is the product id 2345 and then the price of that product 245.5. Then comes the next product etc.

 .

http://bookboon.com/
http://bookboon.com/count/advert/7e44064c-b968-4b1f-947b-a2af00d9019c

Download free eBooks at bookboon.com

Structured Programming with C++

163

7 Files

7.10 Search for a Product Price

We will now use the new prodfile.txt to find the price of a product specified by the user. The laboursome thing about this
kind of files is that we always must start reading from the beginning of the file until we find the correct product. Then
we also easily can find the corresponding price.

First we give a JSP graph:

University West, Trollhättan Structured Programming with C++
Department of Economy and Informatics

Copyright Page: 160

Search for a Product Price
We will now use the new prodfile.txt to find the price of a product
specified by the user. The laboursome thing about this kind of files is
that we always must start reading from the beginning of the file until
we find the correct product. Then we also easily can find the
corresponding price.

First we give a JSP graph:

First we create an instream, and then the user is prompted for the
searched product id.

The loop ’Search prod’ reads one product id and price at a time from
the instream. If it is the searched product id, the price is printed.

After the loop we check if the correct product id was found. If not, an
error text is printed. Finally we close the instream.

Here is the program code:

#include <iostream.h>
#include <fstream.h>
void main()
{
 int iProdId, iSrch, iFound=0;
 double dPrice;
 ifstream infile("prodfile.txt");
 cout << "Enter product id: ";

Search

Create
 instream

Search prod

Read prod id
and price

Prod =
searched prod ?

Found ?

* *

Enter searched
product id

Print price o

Close
 instream

Print
"Product missing"

o

N

J

First we create an instream, and then the user is prompted for the searched product id.

The loop ’Search prod’ reads one product id and price at a time from the instream. If it is the searched product id, the
price is printed.

After the loop we check if the correct product id was found. If not, an error text is printed. Finally we close the instream.

Here is the program code:

#include <iostream.h>

#include <fstream.h>

void main()

{

 int iProdId, iSrch, iFound=0;

 double dPrice;

 ifstream infile("prodfile.txt");

 cout << "Enter product id: ";

 cin >> iSrch;

 while(infile >> iProdId >> dPrice)

 {

 if (iProdId == iSrch)

 {

 cout << "The price is " << dPrice;

http://bookboon.com/

Download free eBooks at bookboon.com

Click on the ad to read more

Structured Programming with C++

164

7 Files

 iFound=1;

 break;

 }

 }

 if (!iFound)

 cout << "Product missing";

 infile.close();

}

First in the program we declare the variables iProdId used for storage of the product id:s read from the instream, iSrch
for the searched product id, iFound which is an indicator to remember whether or not the product id was found. The
value 0 means that we have not found the correct product, and 1 means that we have found it. The variable dPrice is used
for the price read from the instream.

Then the instream is created and attached to the disk file prodfile.txt.

The searched product id is read from the user and stored in the variable iSrch.

The while loop reads products and prices from the instream. The while condition reads one product id and the corresponding
price from the instream. As long as there is data to be read, the loop continues.

When a product and a price has been read, the if statement checks if it equals the searched product id. If so, the price is
printed, the variable iFound is set to 1 and the loop is terminated.

www.mastersopenday.nl

Visit us and find out why we are the best!
Master’s Open Day: 22 February 2014

Join the best at
the Maastricht University
School of Business and
Economics!

Top master’s programmes
•	 	33rd	place	Financial	Times	worldwide	ranking:	MSc	
International	Business

•	 1st	place:	MSc	International	Business
•	 1st	place:	MSc	Financial	Economics
•	 2nd	place:	MSc	Management	of	Learning
•	 2nd	place:	MSc	Economics
•	 	2nd	place:	MSc	Econometrics	and	Operations	Research
•	 	2nd	place:	MSc	Global	Supply	Chain	Management	and	
Change

Sources: Keuzegids Master ranking 2013; Elsevier ‘Beste Studies’ ranking 2012;
Financial Times Global Masters in Management ranking 2012

Maastricht
University is

the best specialist
university in the

Netherlands
(Elsevier)

http://bookboon.com/
http://bookboon.com/count/advert/f7bfcf34-764f-4096-b68c-a27c00b0a12f

Download free eBooks at bookboon.com

Structured Programming with C++

165

7 Files

If the loop is allowed to complete, i.e. if all products have been read without finding the correct id, the variable iFound
will still have the value 0.

After the loop the if statement checks if iFound still is 0. iFound=1 means ‘true’, iFound=0 means ‘false’, !iFound=1 (not
found) means ‘true’. Thus, if ‘not found’ is true, the error message about missing product is printed.

Finally the instream is closed.

7.11 Sorting a File in Memory

We can’t presume the products to be sorted in the file. But in a printout on the screen we want a sorted list of products.
We will create a program which reads all products in the file to an array, sorts the array, and then prints the sorted array.

We now return to the first product file, namely the one only containing product names. You will probably with smaller
amendments achieve the same result with the later file version.

The program will read all product names to an array (two-dimensional char array). The sorting is performed by a function.
After the sorting by the function, the main() function will print the sorted list.

Here is first a JSP graph for the main() function:

University West, Trollhättan Structured Programming with C++
Department of Economy and Informatics

Copyright Page: 162

Sorting a File in Memory
We can’t presume the products to be sorted in the file. But in a
printout on the screen we want a sorted list of products. We will create
a program which reads all products in the file to an array, sorts the
array, and then prints the sorted array.

We now return to the first product file, namely the one only
containing product names. You will probably with smaller
amendments achieve the same result with the later file version.

The program will read all product names to an array (two-dimensional
char array). The sorting is performed by a function. After the sorting
by the function, the main() function will print the sorted list.

Here is first a JSP graph for the main() function:

First we create the instream.

Reading of products to the array is made in a loop, where we increase
the number of items for each single read. By doing so we keep track
of the number of products read. This number is needed by the function
Sort to be able to sort.

The printing of the sorted array is also made in a loop.

Sorting

Create instream Read to array

Read product Increase no.

Sort

* *

Print array

Print prod no. i * *

First we create the instream.

Reading of products to the array is made in a loop, where we increase the number of items for each single read. By doing
so we keep track of the number of products read. This number is needed by the function Sort to be able to sort.

The printing of the sorted array is also made in a loop.

http://bookboon.com/

Download free eBooks at bookboon.com

Structured Programming with C++

166

7 Files

The JSP graph for the function Sort looks like this:

University West, Trollhättan Structured Programming with C++
Department of Economy and Informatics

Copyright Page: 163

The JSP graph for the function Sort looks like this:

You probably recognize the sort algorithm from the Arrays chapter.

Here is the program code.

#include <iostream.h>
#include <fstream.h>
#include <string.h>
void sort(char cList[][30], int n);
void main()
{
 int i=0, j, iNo;
 char cProd[50][30];
 ifstream infile("prodfile.txt");
 while(infile.getline(cProd[i],29))
 i++;
 iNo=i;
 infile.close();
 sort(cProd,iNo);
 for(j=0; j<iNo; j++)
 cout << cProd[j] << endl;
}
void sort(char cList[][30], int n)
{
 int v,h;
 char temp[30];
 for(v=0; v<n-1; v++)

Sort

v = 0 to no.-1

h = v+1 to no. *

cProd[h] < cProd[v] ? *

Exchange pos.

You probably recognize the sort algorithm from the Arrays chapter.

Here is the program code.

#include <iostream.h>

#include <fstream.h>

#include <string.h>

void sort(char cList[][30], int n);

void main()

{

 int i=0, j, iNo;

 char cProd[50][30];

 ifstream infile("prodfile.txt");

 while(infile.getline(cProd[i],29))

 i++;

 iNo=i;

 infile.close();

 sort(cProd,iNo);

 for(j=0; j<iNo; j++)

 cout << cProd[j] << endl;

}

void sort(char cList[][30], int n)

{

 int v,h;

http://bookboon.com/

Download free eBooks at bookboon.com

Click on the ad to read more

Structured Programming with C++

167

7 Files

 char temp[30];

 for(v=0; v<n-1; v++)

 {

 for(h=v+1; h<n; h++)

 if(strcmp(cList[h],cList[v])<0)

 {

 strcpy(temp, cList[v]);

 strcpy(cList[v], cList[h]);

 strcpy(cList[h],temp);

 }

 }

}

The include files are iostream.h for input and output, fstream.h for streams and string.h for the string functions.
Furthermore, we also declare the function sort().

In main() we declare the variable i, which is initialized to 0 and which will accumulate the number of products read, the
variable j used as loop counter, and the variable iNo which finally stores the number of products. In addition, we declare
the two-dimensional array cProd, which will be used for storage of the product names. We also create the instream infile,
which is attached to the disk file prodfile.txt.

 -
©

 P
ho

to
no

ns
to

p

> Apply now

redefine your future

AxA globAl grAduAte
progrAm 2015

axa_ad_grad_prog_170x115.indd 1 19/12/13 16:36

http://bookboon.com/
http://bookboon.com/count/advert/030d71a6-2f39-462d-8d1e-a41900d437e0

Download free eBooks at bookboon.com

Structured Programming with C++

168

7 Files

The while loop manages reading of product names to the array. The while condition is true as long as there is data to
read from the instream. In the first turn of the loop i is = 0 according to the initiation in the beginning of the program.
Therefore, the first product is stored in the item cProd[0]. The loop increases the value of i to 1, and the next product is
stored in cProd[1] etc.

After the loop we save the value of i, i.e. the number of products read, in the variable iNo, and then we close the instream.

Then we call the function sort() and send the array and iNo. After the sort operation we print the array in the last for-loop.

The function sort() takes the array and number of products as parameters. Note that n is the index of the last item of
the array.

In the function we declare v and h to be used as indeces in the array when two items are compared. We also declare the
string array temp, which is used in the triangular exchange of array items.

The outer for-loop with v as loop counter goes from 0 to n-1, i.e. from the first to the next last position of the array. The
inner for-loop goes from the position after v to the last position of the array.

Inside the inner for-loop we compare item h to item v by means of the function strcmp(), which gives a negative result
if item h is less than item v. In that case the items will exchange positions, which is made in the triangular exchange by
means of the string array temp.

At completion of the loop, the array has been sorted.

Remember that, when an array is sent as parameter to a function, it is always done as reference parameter, so the function
operates on the same memory area as used by the array in main(). As a consequence, the array does not need to be
returned from the function.

7.12 Updating File Content

Changing the content of a file of the type used in our programs is rather troublesome. The reason is that you can only
read a file from start to end. You cannot jump into the requested position in the file and change information.

As a consequence you will have the original file as input file and a new file as output file. You read data from the infile
and prints to the outfile. When arriving at the position in the file to be changed, after having read the input information,
you change the value and print to the outfile. Then you will have to continue item by item from the infile and print to the
outfile until all information has been transferred. Finally you delete the original file and change the name of the new file
to equal the name of the original file. The information has then been updated.

We now presume that our product file contains product id:s and prices for each product. The user is prompted for a
product id and a new price for that product.

http://bookboon.com/

Download free eBooks at bookboon.com

Structured Programming with C++

169

7 Files

We draw a JSP graph for this:

University West, Trollhättan Structured Programming with C++
Department of Economy and Informatics

Copyright Page: 165

same memory area as used by the array in main(). As a consequence,
the array does not need to be returned from the function.

Updating File Content
Changing the content of a file of the type used in our programs is
rather troublesome. The reason is that you can only read a file from
start to end. You cannot jump into the requested position in the file
and change information.

As a consequence you will have the original file as input file and a
new file as output file. You read data from the infile and prints to the
outfile. When arriving at the position in the file to be changed, after
having read the input information, you change the value and print to
the outfile. Then you will have to continue item by item from the
infile and print to the outfile until all information has been transferred.
Finally you delete the original file and change the name of the new
file to equal the name of the original file. The information has then
been updated.

We now presume that our product file contains product id:s and prices
for each product. The user is prompted for a product id and a new
price for that product.

We draw a JSP graph for this:

First we create the instream for the original file and the outstream for
the new, which by now is empty. The user is then prompted for the
product id to be updated.

Then we use a loop to read product id:s and prices from the original
file. The product id is compared to the one entered by the user. If

Update file

Create instream
and outstream

Enter
searched prod.

Prod id=
searched?

Read,
update, print

Read id
and price

* *

Enter new price o

Print prod.
and price

*

Close
streams

Delete old,
rename

new

First we create the instream for the original file and the outstream for the new, which by now is empty. The user is then
prompted for the product id to be updated.

Then we use a loop to read product id:s and prices from the original file. The product id is compared to the one entered
by the user. If equal, the user is prompted for a new price, otherwise the old price will be used. The product id and price
are then printed to the outstream.

The streams are closed and at the end of the program we delete the old file and rename the new file to the old name.

Here is the program code:

#include <iostream.h>

#include <fstream.h>

#include <stdio.h>

void main()

{

 int iSrch, iProdId;

 double dPrice;

 ifstream infile("prodfile.txt");

 ofstream outfile("temp.txt");

 cout << "Specify product id: ";

 cin >> iSrch;

 while(infile >> iProdId >> dPrice)

 {

 if (iProdId == iSrch)

 {

 cout << "Specify the new price: ";

 cin >> dPrice;

http://bookboon.com/

Download free eBooks at bookboon.com

Click on the ad to read more

Structured Programming with C++

170

7 Files

 }

 outfile << iProdId << endl << dPrice << endl;

 }

 infile.close();

 outfile.close();

 remove("prodfile.txt");

 rename("temp.txt", "prodfile.txt");

}

The include files are the usual ones, except that we also need stdio.h to be able to delete and rename files.

In main() we declare the variable iSrch to be used for the product id entered by the user, iProdId for product id:s read
from the file, and dPrice for prices from the file.

Then we create the instream, which is attached to the original file prodfile.txt, and the outstream, which is attached to a
new file, temp.txt. Then the user is prompted for the searched product id.

The while loop reads product id and price from the instream as long as there is data. Each product id is checked in the if
statement against the product id specified by the user. If equal, the user is prompted for a new price, which is stored in the
variable dPrice, i.e. the old price is replaced by the new one. Then the product id and price are written to the outstream. At
completion of the while loop all products have been transferred to the new file and the requested price has been updated.

After the while loop the streams are closed, the old file is deleted by the remove() function and the new file temp.txt is
renamed to prodfile.txt by the rename() function.

http://bookboon.com/
http://bookboon.com/count/advert/09268424-498c-48c4-a852-a25700ed3ed3

Download free eBooks at bookboon.com

Structured Programming with C++

171

7 Files

7.13 Copying Files

Copying a file could be done according to the same method as used by the previous program with the exception that no
price is updated and that the original file is not deleted. We will however show a shortcut of copying a file with the file
name specified by the user.

The copy of data is made by the function rdbuf(), which in one single operation reads all data from the original file without
the need of picking item by item in a loop.

First we give a JSP graph:

University West, Trollhättan Structured Programming with C++
Department of Economy and Informatics

Copyright Page: 167

After the while loop the streams are closed, the old file is deleted by
the remove() function and the new file temp.txt is renamed to
prodfile.txt by the rename() function.

Copying Files
Copying a file could be done according to the same method as used by
the previous program with the exception that no price is updated and
that the original file is not deleted. We will however show a shortcut
of copying a file with the file name specified by the user.

The copy of data is made by the function rdbuf(), which in one single
operation reads all data from the original file without the need of
picking item by item in a loop.

First we give a JSP graph:

First the user is prompted for the new file name. Then we create the
instream for the original file and the outstream for the new file.

We then check if the outstream creation was successful. It might
happen that the user enters characters not allowed in file names. If so,
we would get a run time error. In case of an error, we print an error
message. If, however, everything is OK, we copy all data. Finally we
close the streams.

Here is the program code:

#include <iostream.h>
#include <fstream.h>
#include <stdio.h>
void main()
{
 char cNewName[12];
 cout << "Specify new file name: ";
 cin >> cNewName;

Copy file

Create instream
and outstream

Enter new
file name

Is the file name
incorrect?

Error msg o

Close
stream

Copy data o

First the user is prompted for the new file name. Then we create the instream for the original file and the outstream for
the new file.

We then check if the outstream creation was successful. It might happen that the user enters characters not allowed in
file names. If so, we would get a run time error. In case of an error, we print an error message. If, however, everything is
OK, we copy all data. Finally we close the streams.

Here is the program code:

#include <iostream.h>

#include <fstream.h>

#include <stdio.h>

void main()

{

 char cNewName[12];

 cout << "Specify new file name: ";

 cin >> cNewName;

 ifstream infile("prodfile.txt");

 ofstream outfile(cNewName);

 if (!outfile)

 {

 cout << "The file could not be created";

 }

http://bookboon.com/

Download free eBooks at bookboon.com

Structured Programming with C++

172

7 Files

 else

 {

 outfile << infile.rdbuf();

 }

 outfile.close();

 infile.close();

}

The include files are iostream.h for input and output, fstream.h for stream management, and stdio.h to allow for using
the function rdbuf().

In main() we prompt the user for the new file name, which is stored in the variable cNewName. Then we create the
instream, which is attached to the disk file prodfile.txt, and the outstream, which is attached to a disk file with the user
supplied name. Note that cNewName is not enclosed in quotes, since it is a variable and not a specific string.

The if statement checks if the outstream creation succeeded. If so, the variable outfile contains an address to the outfile
object. If it didn’t succeed, the address is = 0. That means that !outfile is true if the address is 0. In that case we print an
error message to the user. Otherwise, i.e.if the outstream could be created, we use the function rdbuf() to copy all data
in one single operation from the infile to the outfile.

Finally the streams are closed.

Having run the program you can by means of ’Explore’ check the new file.

7.14 Summary

In this chapter we have learnt the basics of file management. You have learnt how to use streams and attach them to
physical disk files. You have also learnt that you communicate with the streams, and not directly with the disk files.

We have discussed the meaning of formatted and unformatted input and output. You are now able to write programs
where the user can enter information to be stored in a file, and read information from a file and present it on the screen.

We have also studied examples of how to search for information in a file, read and sort file information before presentation
on the screen, update file information and copy files.

7.15 Exercises

1. Start with the program in the section ‘A Complete Write Program’. Expand the program so that it is also
possible to specify warehouse location (for instance EH23) for each product. Check with the Notepad
program that the file contains the expected information.

2. Start with the program in the section ‘A Complete Reading Program’ and modify it so it also will be capable
of reading the warehouse locations entered in the previous exercise.

3. Start with the program in the section ‘New Item at the End of the File’ and modify it so that you also can
enter the warehouse location of the new product. Use the same file as in the two previous exercises. Then
run the program in exercise and check the existence of the new product in the output.

http://bookboon.com/

Download free eBooks at bookboon.com

Structured Programming with C++

173

7 Files

4. Start with the program in the section ‘Products and Prices’ and modify it so that you also can enter quantity
in stock for each product.

5. Start with the program in the section ‘Search for a Product Price’ and modify it so that also quantity in stock
is printed on the screen. Use the same file as created in the previous exercise.

6. Start with the program in the section ‘Sorting a File in Memory’ and accommodate it to also be able to
manage the file with product names and warehouse locations created in the first exercise.

7. Start with the program in the section ‘Updating File Content’ and modify it so that the user will be able to
update the quantity in stock. Use the file with product id, price and quantity in stock created in a previous
exercise.

8. Create a program where you can enter
- first name
- surname
- city
for some of your course mates. These should be saved in a file. The program should be possible to run
several times while keeping existing file information.

9. Create a program which reads the course mate information from the file created in the previous exercise and
prints it on the screen.

10. Create a program which can update the city of a person. The first and surname must then be entered from
the keyboard. The new city should also be possible to specify.

11. Create a program which can remove a person from the file. The first and surname of the person must then
be entered.

12. Create a program which sorts the names of the file by surname. Then use the program from exercise 9 to
check the result of the sorting.

13. Create a program which copies the file to a new file. The new file name should be entered by the user.
14. Write a menu program where you gather the tasks from the latest exercises. The menu could look like this:

1. Enter information
2. Print
3. Update city
4. Remove
5. Sort
6. Copy
0. Exit

Select 0-6:

http://bookboon.com/

